صادق اسفیدان

بسم الله الرحمن الرحیم سایت شخصی صادق قربانی اسفیدان

صادق اسفیدان

بسم الله الرحمن الرحیم سایت شخصی صادق قربانی اسفیدان

چدن نشکن آستمپر ADI

چدن نشکن آستمپر به عنوان ماده مهندسی جدید، جایگاه خاصی را در صنایع بویژه صنعت خودرو به خود اختصاص داده است. اما سختی بالا باعث کاهش قابلیت ماشینکاری و افزایش هزینه های تولید این خانواده از مواد شده است. در پژوهش حاضر هدف، بررسی اثر عناصر آلیاژی نظیر منگنز و سیلیسیم و همچنین فرایند عملیات حرارتی شامل دما و زمان عملیات آستنیته کردن و دما و زمان عملیات آستمپرینگ، روی چدن نشکن آستمپر قابل ماشینکاری می باشد. با توجه به مشخصه های مهم این گروه یعنی میزان ازدیاد طول نسبی بالا و سختی پائین در حد قطعه ریخته شده می بایست میزان جدایش عناصر آلیاژی و قاعدتاً تشکیل کاربیدهای یوتکتیکی و میزان آستنیت واکنش نیافته و مارتنزیت به حداقل مقدار ممکن برسد. در این راستا بر پایه
آزمایش های مکانیکی، متالوگرافی 12/0 درصد وزنی منگنز، 1/3 درصد وزنی سیلیسیم، 27/0 درصد وزنی مولیبدن، 6/0 درصد وزنی مس، و 1 درصد نیکل و اجرای عملیات آستنیته کردن در دمای 850 درجه سانتیگراد به مدت زمان 55 دقیقه و عملیات آستمپرینگ در دمای 390 درجه سانتیگراد به مدت زمان 60 دقیقه، علاوه بر حداکثر کاهش هزینه های تولید، دستیابی به سختی برینل و ازدیاد طول نسبی 8 درصد و همچنین استحکام کششی 827 مگا پاسکال و استحکام تسلیم 623 مگاپاسکال، عملی می شود.

کلید واژه:

1. چدن نشکن آستمپر                                              Austempered Ductile Iron (ADI)

2.چدن نشکن آستمپر قابل ماشینکاری  Machinable      Austempered Ductile Iron (MADI)


      



   دانلود                                                                                 




متالورژی پودر آلومینیوم

تولید قطعات با پودر ، به بیش از پنج هزار سال پیش می رسد ، هم اکنون ، ستون آهنی با وزنی حدود شش تن در شهر دهلی هندوستان وجود دارد که  در هزار و ششصد سال پیش به همین طریقه (متالورژی پودر)  تهیه شده است .

در اواخر قرن هیجدهم ولاستون کشف کرد که می توان پودر فلز پلاتین را (که در طبیعت به صورت آزاد شناخته شده بود) پس از تراکم و حرارت دادن ، در حالت گرم با چکش کاری به بلوک تبدیل کرد . ولاستون جزییات متد خود رادر سال 1829 ، منتشر کرد و اهمیت فاکتورهایی نظیر اندازه دانه ها ، متراکم کردن پودر باوزن مخصوص بالا و اکتیویته سطحی و غیره ... را توضیح داد.

همزمان با ولاستون و به طور جداگانه متالورژیست برجسته روسی پیوتر زابولفسکی در سال 1826 ، از این روش برای ساختن سکه ها و نشان ها از جنس پلاتین ، استفاده کرد.

در نیمه قرن نوزدهم ، متخصصین متالورژی به روش های ذوب فلزات با نقطه ذوب با دست یافتند و همین مساله باعث شد که مجددا استفاده از متالورژی پودر محدود شود هر چند تقاضا برای تولید قطعاتی مانند تنگستن از طریق متالورژی پودر ادامه یافت .

یکی از دلایل توسعه متالوژی پودر این است که در روش متالورژی پودر ، فلز تلف شده به مراتب کمتر از سایر روش ها است و حتی می توان  گفت وجود ندارد . در این مورد هر یک کیلوگرم محصول ساخته شده با متالورژی پودر ، معادل است با   سایر روشهای شکل دادن نظیر برش و تراشکاری ، چون در روش هایی نظیر تراشکاری مقادیر متنابهی از فلز به صورت براده در می آید که تقریبا غیر قابل استفاده است . به علاوه یک کیلو گرم از بعضی از مواد ساخته شده با روش های متالورژی پودر می تواند کار ده ها کیلو گرم فولاد آلیاژی ابزار را انجام دهد .

ادامه مطلب ...

آلیاژ AL- si

آلیاژهای آلومینیوم حاوی سیلیسیم به عنوان آلیاژی اصل به علت سیالیت زیاد که ناشی از وجود حجم نسبتا زیاد‌‌‌Al-Si  است. مهمترین آلیاژهای ریخته گری محسوب می شود.

مزایای دیگر این نوع آلیاژ ریخته گری مقاومت خوردگی بالا و جوش پذیری خوب است و اینکه سیلیسیم ضریب انبساط حرارتی را کاهش می دهد در هر حال به علت وجود ذرات سخت سیلیسیم در زیر ساختار ماشین کاری این آلیاژ مشکل است.

 حلالیت سیلیسیم در آلومینیوم در درجه حرارت محیط ناچیز و حدود 0.05% می باشد. یوتکتیک بین محلول جامد آلومینیوم حاوی بیش از یک درصد سیلیسیم خالص به عنوان فاز دوم تشکیل می شود. ترکیب دقیق یوتکتیک هنوز مورد شک و تردید است ولی امروزه تقریبا ترکیب Al-12/7% si به عنوان یوتکتیک قابل قبول است. انجماد آهسته یک آلیاژ ‌‌Al-Si خالص تولید ریزساختار بسیار درشت می کند که در آن یوتکتیک به صورت صفحات یا سوزنی های بسیار بزرگ سیلیسیم در یک زمینه ی پیوسته ی آلومینیومی تشکیل می شود.

خود یوتکتیک از شبکه های مجزا که در آن ذرات سیلیسیم ظاهرا بهم مرتبط شده اند تشکیل شده است. آلیاژهای دارای این نوع یوتکتیک درشت به علت طبیعت ترد صفحات سیلیسیم درشت دارای انعطاف پذیری پایین است . سریع سرد کردن آلیاژ در هنگام ریخته گری در غالب دائمی اتفاق میافتد که به شدت ریز ساختار را ریز کرده و فاز سیلیسیم به شکل الیاف در امده که در نتیجه آن انعطاف پذیری و استحکام کشش به مقدار بسیار زیادی بهبود می یابد. یوتکتیک را میتوان از طریق فرایند اصلاح کردن ریز نمود. 

                              رمز فایل: 147  دانلود

پایان نامه کارشناسی ارشد مواد

          اصلاح ساختار آلیاژهای هایپریوتکتیک آلومینیم -سیلیسم




            دانلود 

     


                                           

                                               

Modern Physical Metallurgy and Materials Engineering

It is less than five years since the last edition of
Modern Physical Metallurgy was enlarged to include
the related subject of Materials Science and Engineering,
appearing under the title Metals and Materials:
Science, Processes, Applications. In its revised
approach, it covered a wider range of metals and
alloys and included ceramics and glasses, polymers
and composites, modern alloys and surface engineering.
Each of these additional subject areas was treated
on an individual basis as well as against unifying
background theories of structure, kinetics and phase
transformations, defects and materials characterization.
In the relatively short period of time since that
previous edition, there have been notable advances
in the materials science and engineering of biomaterials
and sports equipment. Two new chapters have
now been devoted to these topics. The subject of
biomaterials concerns the science and application of
materials that must function effectively and reliably
whilst in contact with living tissue; these vital materials
feature increasingly in modern surgery, medicine
and dentistry. Materials developed for sports equipment
must take into account the demands peculiar
to each sport. In the process of writing these additional
chapters, we became increasingly conscious
that engineering aspects of the book were coming
more and more into prominence. A new form of
title was deemed appropriate. Finally, we decided
to combine the phrase ‘physical metallurgy’, which
expresses a sense of continuity with earlier editions,
directly with ‘materials engineering’ in the
book’s title.
Overall, as in the previous edition, the book aims to
present the science of materials in a relatively concise
form and to lead naturally into an explanation of the
ways in which various important materials are processed
and applied. We have sought to provide a useful
survey of key materials and their interrelations, emphasizing,
wherever possible, the underlying scientific and
engineering principles. Throughout we have indicated
the manner in which powerful tools of characterization,
such as optical and electron microscopy, X-ray
diffraction, etc. are used to elucidate the vital relations
between the structure of a material and its mechanical,
physical and/or chemical properties. Control of the
microstructure/property relation recurs as a vital theme
during the actual processing of metals, ceramics and
polymers; production procedures for ostensibly dissimilar
materials frequently share common principles.
We have continued to try and make the subject
area accessible to a wide range of readers. Sufficient
background and theory is provided to assist students
in answering questions over a large part of a typical
Degree course in materials science and engineering.
Some sections provide a background or point of entry
for research studies at postgraduate level. For the more
general reader, the book should serve as a useful
introduction or occasional reference on the myriad
ways in which materials are utilized. We hope that
we have succeeded in conveying the excitement of
the atmosphere in which a life-altering range of new
materials is being conceived and developed.
R. E. Smallman

R. J. Bishop

                                           download 

                                                     

      

ریخته‌ گری فولاد

ریخته ‌گری فولاد

مقدمه

تعدادی از فواید ساخت فولاد‌ها مانند یک مواد خوب برای ساختمان می‌تواند استفاده شود از ریخته‌گری فولاد.

فولاد مستحکم است با محدوده استحکام کششی از 60000تا حدود 280000PSI. فولاد همچنین انعطاف دارد و ترکیبی از استحکام و انعطاف پذیری علاوه بر این فولاد استحکام شکست بالایی دارد و مقاوم به شک است. خواص فولاد کنترل می‌شود به وسیله کنترل محدوده آن به وسیله ترکیب آن، مخصوص درصد کربن آن.

فولاد آلیاژی از آهن و کربن است، که خواص قابل توجهی مانند قابلیت کنترل مجموعه‌ای از خواص با درصد کربن، برای مثال وقتی کربن وجود ندارد، آهن کاملاً نرم و ضعیف است. اگر کربن اضافه شود کمتر از 2/0 تا 3/0 درصد، استحکام افزایشی محسوسی دارد و شکل a 1-15 نشان می‌دهد این اثر کربن روی استحکام کششی و درصد کاهشی سطح مقطع در فولاد ریختگی کربنی ساده.

منحنی‌هایی برای استحکام نهایی و درصد ازدیاد طول نشان می‌دهد که در یک جهت‌اند. توجه به این مفهوم که کنترل خواص، فولاد بیشتر مورد توجه به وسیله کنترل دیگر خواص، برای مثال عملیات حرارتی. این موضوع در قسمت 17 کاملاً مورد بحث قرار گرفته است.اما به طورخلاصه آهن و فولاد متحمل یک تغییر در ساختار شبکه کریستالی می‌شود.

(ترتیب اتم‌ها در حالت جامد) که آن ممکن است خواص را کنترل کند به وسیله کنترل سرعت سرد کردن از درجه حرارت بالا (°F1650 تا 1500). کنترل بیشتر همچنین بدست می‌آید به وسیله گرم کرد دوباره (تمیرینگ یا کشیدن) بعد از سرد کردن سریع (کوئینچ کردن). در شکل b1-15 ببینید.

یک نشانه خاص از ریخته‌گری فولاد در مقایسه با تولید این واقعیت است که قطعات فولادی دارند یک یکنواختی خواص بدون توجه به جهتی که آنها را آزمایش می‌شود. که این رفتار ایزوتروپیک گفته می‌شود. این رفتار در فولادی که روی آن کار شده با کار مکانیکی، شکل ساختاری از شمشی یا بیلت زیرا انجام کار خواص جهت داری را نشان می‌دهد.

بنابراین فولاد کار شده با دوام و مستحکم است وقتی آزمایشی در جهت بزرگ‌ترین ازدیاد طول است اما ضعیف‌تر و شکنندگی بیشتری دارد اگر در جهت عرضی آزمایش شود. فولاد ریختگی این جهت‌دار بودن را ندارد و از این رو مناسب است برای کاربرد آن زیرا این اثر می‌تواند اثر مضری را به وجود آورد.

یک فایده خوب قطعات ریختگی فولادی قابلیت جوشکاری آسان آن است که در دیگر آلیاژ‌های آهنی وجود ندارد. در واقع فولاد می‌تواند باشد قابل جوشکاری باشد.

شاید پتانسیل مهم این مواد امکان ترکیب آنها است به وسیله قطعات ریختگی فولاد جوش داده شده یا شکل‌های ساخته شده به روش‌های دیگر، تولید ساختار ترکیبی قسمتی از قطعات ریختگی و قسمتی فولاد کار شد.

خواص آهنی بیشتر، یکی از فواید وسیع فولاد است، برای مثال، استحکام و انعطاف پذیری، که باعث اشکالات معینی در ریخته‌گریمی شود. که در بخش 9 مقداری توضیح داده شده است. بعد از ریخته‌گری، جدا می‌شود حجم را و تغذیه موجود در آن زیرا به علت انعطاف‌پذیری و استحکام جدا کردن آن مشکل می‌شود و فقط چکش‌کاری برای آلیاژهای تردتر مانند چدن است. اره کردن، برش با چرخ ساینده، مشعل و غیره برای این هدف مورد نیاز است.

ترکیب خوبی از خواص ریخته گری در فولاد قبل از این گفته شد.از نقطه نظر روش ریخته‌گری، هر چند، سخت‌گیری برای آمادگی طراح و متالورژیست به علت خواص ریختگی و محدوده بسته از ترکیبات است. ریختن فولاد در درجه حرارت بالا همچنین در خواست‌ها برای توجه ویژه به سوژه‌های مورد نیاز، پاتیل‌ها، ماسه‌های قالب‌گیری، تبدیل فلز به شکل پر کردن قالب و بدون نیامد، و گزارش مسئله. انقباض انجماد بالای فولاد همچنین معرفی طرح و مسائل قالب‌گیری به ندرت بیشتر از دیگر فلزات می‌شود. در ذوب این آلیاژ‌ها مسایل ویژه زیاد یا بی‌مانند در فولاد.

طبیعت آلیاژ‌ها و واکنش‌پذیری آنها با اکسیژن و ناخالصی‌های آنها، نیازمند روش پیچیده برای ذوب کردن و تصفیه برای ساخت استفاده شود برای اطمینان از تولید خوب و با کیفیت فلز است.

هدف این قسمت توضیح این مسائل است. اما به علت ذوب فولاد همچنین ویژه است. در بخش 16 به طور جداگانه توضیح داده شده است. و تنها یک بررسی مختصر از روش‌های ذوب داده شده است

ادامه مطلب ...

خواص مکانیکی

فلزات و تغییر شکلشان
فلز ماده‌ای است که می‌توان آن را صیقل داده و براق کرد، یا به طرح‌های گوناگون در آورد و از آن مفتول‌های سیمی ظریف تهیه کرد. فلز جسمی است که آزمایش‌های مربوط به گرما و مهم‌تر از همه جریان الکتریکی را به خوبی هدایت می‌کند. فلزات با یکدیگر فرق زیادی دارند، از جمله در رنگ و سختی و نرمی، تعدادی از آنها ممکن است به آسانی خم شده و یا خیلی محکم و مقاوم باشند .

شکل واقعی فلزات
شکل واقعی فلزات به اندازه یون و تعداد الکترون‌هایی که هر یون در حوزه اشتراکی دارد و انرژی یون‌ها و الکترون‌ها بستگی دارد. هر قدر فلز گرمتر شود این انرژی زیادتر خواهد شد. پس فلزات گوناگون ممکن است طرح‌های گوناگونی به خود بگیرند. یک فلز ممکن است در حرارت‌های مختلف، طرح‌های متنوعی را اختیار کند، اما در بیشتر آرایش‌ها، یون‌ها کاملاً پهلوی هم قرار دارند، و معمولاً تراکم در فلزات زیادتر از دیگر مواد است. اختلافات عمده فلزات و دیگر جامدات و مایعات.فلزات هادی خوب برق هستند. چون الکترون‌های آنها برای حرکت مانعی ندارند. همه فلزات جامد و مایع گروهی الکترون آزاد دارند، طبعا همه فلزات هادی‌های خوب الکتریسیته هستند. به این سبب فلزات از دیگر گروه‌های عناصر، کاملاً متفاوت دارد.
اختلاف عمده فلزات و دیگر جامدات و مایعات، در توانایی هدایت گرما و الکتریسیته است. هادی خوب آزمایش‌های مربوط به گرما جسمی است که ذرات آن طوری تنظیم شوند که بتوانند آزادانه نوسان یافته و به ذرات مجاور خود نیز امکان نوسان آزاد را بدهند. "گرم شدن" همان نوسانات سریع یون‌ها و الکترون‌ها است. در فلزات چون گروه الکترون‌ها، غبار مانند یون‌ها را احاطه می‌کنند، طبعا هادی‌های خوبی برای حرارت هستند «رسانش گرمایی فلزات).

مقاومت مکانیکی فلز
مقصود آن مقدار باری است که فلز می‌تواند تحمل کرده، نشکند. بسیاری از فلزات، وقتی گرم هستند، اگر تحت فشار قرار گیرند، شکل خود را زیادتر از موقعی که سرد هستند، تغییر می‌دهند. بسیاری از فلزات در زیر فشار متغییر مانند نوسانات، آسانتر از موقعی که سنگین باری را تحمل می‌کنند، می‌شکنند.

ادامه مطلب ...

جوشکاری زیر پودری

جوشکاری زیر پودری

جوش زیر پودری یک فرایند جوش قوس الکتریکی است که در آن گرمای لازم برای جوشکاری توسط یک یا چند قوس بین یک فلز پوشش نشده، یک یا چند الکترود مصرفی و یک قطعه کار تامین می شود. قوس توسط لایه ای از فــلاکس پودری قابل ذوب شدن که فلز جوش مذاب و فلز پایه نزدیک اتصال را پوشانده، و فلز جوش مذاب را از آلودگی های اتمسفر حفاظت می کند پوشیده می شود.

جوش که ترکیبی از فلاکس مذاب و فلزجوش مذاب است می گذرد. فلاکس مذاب معمولا", هادی خوب جریان الکتریسته است، در حالی که فلاکس سرد, هادی نیست. پودر جوش می تواند اکسیدزداها و ناخالصی زداهایی که با فلز جوش واکنش شیمیایی می دهند را نیز تامین کند علاوه براینکه یک لایه محافظ ایجاد می کند. فلاکس های جوش زیر پودری فولادهای آلیاژی همچنین می توانند حاوی عناصر آلیاژی برای بهبود ترکیب شیمیایی فلز جوش باشند. جریان الکتریکی از یک ژنراتور (ترانسفورماتور یا رکتی فایر) تامین شده، از اتصالات عبور می کند تا قوسی را بین الکترود و فلز پایه بر قرار کند را ذوب می کند که حوضچه مذاب را برای پرکردن اتصال تشکیل دهند. درکلیه انواع تجهیزات, غلطک های هدایـت با نیروی مکانیکی بطور پیوسته سیم الکترود مصرفی فلزی را از میان لوله تماس (نازل) و توده فلاکس به اتصالی که باید جوش شود می راند. سیم الکترود عموما" یک فولاد کم کربن با ترکیب شیمیایی دقیق که در یک قرقره یا بشکه پیچیده شده می باشد. سیم الکترود در منطقه جوش ذوب شده و در طول اتصال رسوب می کند. فلاکس دانه ای در جلوی قوس ریخته شده و پس از انجماد فلز جوش، فلاکس ذوب نشده تــوسط سیستم مکش جمع کننده برای استفاده مجدد جمع آوری می شود. در جوش خودکار بازیابی فلاکس مجموعه ای از تجهیزات و یک لوله بازیابی فلاکس که درست پس از لوله تماس قرار گرفته است می باشد.

جوش زیر پودری به هر دو روش نیمه خودکار و خودکار قابل انجام بوده و روش خودکار بخاطر مزایا بیشتر، استفاده گسترده تر دارد. در روش نیمه خودکار جوشکار بصورت دستی یک تفنگ جوشکاری (به انضمام مخزن فلاکس) که فلاکس و الکترود را به محل اتصال تغذیه می کند را هدایـت کرده و خودش سرعت حرکت را کنترل می کند. در روش جوش کاملا"خودکار دستگاه بصورت خودکار الکترود و فلاکس را در طول مسیر جوش تغذیه و هدایـت کرده و نرخ رسوب را کنترل می کند. در کاربردهای خاصی جوش خودکار زیر پودری دو یا چند الکترود بصورت متوالی در یک اتصال تغذیه می شوند. الکترودها ممکن است کنار یکدیگر بوده و به یک حوضچه تغذیه شوند یا اینکه به اندازه کافی فاصله داشته تا پس از انجماد یکی حوضچه دیگری تشکیل شود و مستقلا" منجمد شوند. روش جدیدتر جوش قوس های پشت سرهم است که جوش چند پاس را دریک شیار اتصال برای افزایش سرعت حرکت و نرخ رسوب جوشکاری تامین می کند.

ادامه مطلب ...

استخراج طلای سفید از ضایعات‌

مقدمه

محققان کشورمان با دستیابی به دانش فنی استحصال فلزات گرانبها موفق شدند فلزاتی مانند رنیم و پلاتین را بازیافت کنند. بازیافت فلزات گرانبها از مواد مستعمل فرآیند مهمی است؛ زیرا کاتالیست‌های زیادی در صنعت نفت مورد استفاده قرار می‌گیرند که حاوی فلزات گرانبها هستند اما تاکنون به دلیل دسترسی نداشتن به دانش فنی، برای استحصال این فلزات از کشورهای خارجی کمک گرفته می‌شد.

اهمیت این طرح زمانی بیشتر مشخص می‌شود که بدانیم نه تنها درصد خلوص این مواد با خروجی معتبرترین شرکت بازیافت‌کننده جهان برابری می‌کند، بلکه مزایای دیگری هم این کار را از نمونه‌های مشابه آن متمایز می‌کند.

چنانچه این طرح در ایران صنعتی شود گامی بزرگ در جهت صرفه‌جویی اقتصادی و نیل به خودکفایی خواهد بود. با دکتر مهدی رشیدزاده، مجری طرح و رئیس مرکز تحقیقات کاتالیست پژوهشگاه صنعت نفت، درباره این طرح و مراحل آن صحبت کردیم.

بازیافت فلزات بخصوص فلزات گرانبها از چه زمان و در چه کشورهایی مطرح بوده است؟

این فرآیند که به ریفورمینگ کاتالیستی معروف است فرآیند کاملا شناخته شده‌ای است که در صنعت پالایش نفت برای بهبود کیفیت اکتان بنزین، تهیه آروماتیک‌ها برای صنایع پتروشیمی و تولید هیدروژن (به عنوان محصول جانبی) برای مصارف صنعتی به کار می‌رود.

شرکت W.C.Heraeus یکی از معتبرترین شرکت‌های بازیافت‌کننده فلزات گرانبها از کاتالیست‌ها و سایر مواد مستعمل است که  بیش از 50 سال در 2 مرکز خود در آلمان و کالیفرنیای آمریکا طیف وسیعی از فلزات با ارزش نظیر طلا، نقره، پلاتین، پالادیوم، رنیم، روتنیوم و رودیم را بازیافت می‌کند.

با توجه به این‌که این روش‌ها از مدت‌ها پیش در دنیا استفاده می‌شدند، چه ویژگی‌هایی اینکار را از بقیه متمایز می‌کند؟


بازیافت پلاتین و رنیم از کاتالیست مستعمل ریفورمینگ توسط مرکز تحقیقات کاتالیست پژوهشگاه صنعت نفت با راندمان و درجه خلوص بالای 99 درصد و در محدوده ارقام گزارش شده صنعتی معتبرترین شرکت بازیافت‌کننده جهان است. البته هزینه بازیافت داخلی هر کیلوگرم کاتالیست در مقایسه با قیمت بازیافت خارجی کمتر است.


به اضافه این‌که با این روش، سالانه فروش مقادیر قابل توجهی سدیم آلومینات تحت عنوان محصول جانبی آن امکان‌پذیر می‌شود، که درواقع از مزایای  طرح محسوب می‌شود.

سازمان‌ها یا مراکز حمایت کننده از طرح

بخشی از این طرح با حمایت معاونت بازرگانی شرکت ملی پالایش و پخش انجام شده است.

اهمیت اجرای این طرح از لحاظ علمی، اقتصادی و...


پس از سپری شدن عمر مفید کاتالیست‌های حاوی فلزات گرانبها از رآکتور پالایشگاه‌ها تخلیه می‌شوند. به دلیل قیمت قابل توجه پلاتین در تمام دنیا بازیافت این فلز از کاتالیست‌های مستعمل یک ضرورت اقتصادی است و از آنجا که فرآیند بازیافت این فلز از کاتالیست مستعمل در ایران صنعتی نشده، سالانه مقادیر قابل توجهی از این کاتالیست‌ها به منظور بازیافت فلزات با ارزش آن به خارج از کشور فرستاده می‌شود.

با توجه به میزان مصرف بالای این کاتالیست‌ها که بالغ بر 100 تن در سال است، چنانچه این طرح در ایران صنعتی شود گامی بزرگ در جهت صرفه جویی اقتصادی و نیل به خودکفایی خواهد بود
.

کار روی این پروژه از چه زمانی شروع شده و در حال حاضر این طرح در چه مرحله‌ای است؟

کار روی این پروژه از سال 1375 در مرکز تحقیقات کاتالیست پژوهشگاه شروع شده است. پس از انجام پروژه‌های آزمایشگاهی و نیمه صنعتی طراحی مفهومی، بازیافت فلزات پلاتین رنیم از کاتالیست مستعمل ریفورمینگ در مقیاس 400 کیلوگرم در روز انجام شده است هم اکنون پژوهشگاه آمادگی واگذاری بسته طراحی مفهومی بازیافت فلزات پلاتین  رنیم از کاتالیست مستعمل ریفورمینگ در مقیاس 400 کیلوگرم به همراه بررسی فنی اقتصادی طرح بازیافت و دستورالعمل نحوه محاسبات ارزش فلزات پلاتین  رنیم در کاتالیست مستعمل را به شرکت‌های بازیافت‌کننده داخلی و خارجی دارد.

ادامه مطلب ...

مقدمه ای بر خوردگی

مقدمه ای بر خوردگی

 

پدیده خوردگی و نقش آن در موادی که در تأسیسات و ماشین­آلات مختلف در صنایع گوناگون مورد استفاده قرار می گیرند دارای اهمیت بسزائی می باشد. خوردگی را می توان به صورت واکنش بین فلز و محیط اطراف آن توصیف کرد که بر اثر این واکنش فلز وارد محیط اطراف خود می شود یا تبدیل به یک فاز بین فلزی با ویژگی اکسیدی می شود این عمل در نهایت به ایجاد حفره سایش و کاهش استحکام مکانیکی فلز منجر می شود که می تواند باعث شکست و تخریب آن شود .

خوردگی عامل بخش عمده ای از تخریب و انهدام سازه های فلزی و غیر فلزی است و اهمیت آن نه تنها از این نظر است که شکست در بیشتر موارد ناگهانی است بلکه بیشتر بدلیل حضور و تأثیر همه جانبه آن می باشد.

ادامه مطلب ...